

OM Data Dictionary Update

Mr. Roy Scrudder, UT-ARL

10 December 1997

HLA Object Model Integrated Tools Suite

OM Library Status

- Part of the late-October OM Tools release along with the OMDT
- New features:
 - Ability to browse local file system for object models to check in
- Current development activities:
 - Streamlining the model check-in process (reusable OMT DIF software component)
 - Migrating to Oracle DBMS
 - Beginning modifications to support OMT 1.3
- Draft OMT DIF 1.3 completed and under review

OM Library Population

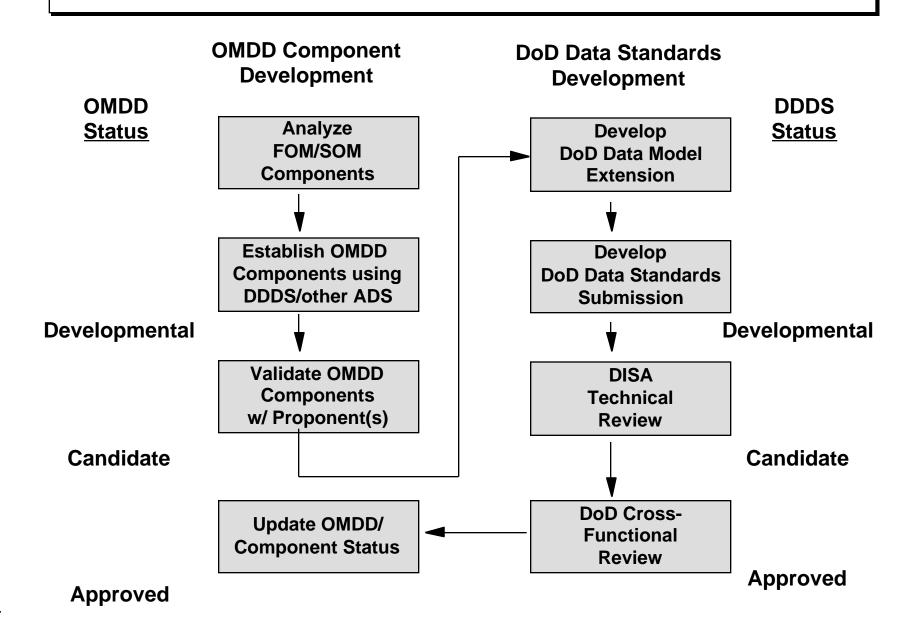
Currently populated with:

- CCTT SAF SOM *
- ModSAF FCS SOM *
- CTAPS SOM *
- Eagle SOM *
- NASM AP SOM *
- Real-time Platform Reference FOM
- Engineering Federation FOM
- Joint Training Confederation FOM
- NASM/AP SOM
- Joint Training Federation Protofederation FOM

Additional FOMs expected soon:

- F-14D FOM (NAWC-TSD)
- Countermine Component FOM (Army / NVESD)

Object Model Data Dictionary System (OMDDS) Status


- Alpha version available for AMG access:
 - http://s3.arlut.utexas.edu/cfdocs/index.cfm
 - Requires Netscape 4.0 or Internet Explorer 4.0
- Core functionality in the Alpha release:
 - Browse Object Model Data Dictionary (OMDD) components
 - Search OMDD components
 - Manage user selections of OMDD components (persistently)
 - Export user selected OMDD components in OMDD DIF format
- Functionality under development:
 - View mappings of OMDD contents to the OML and DDDS
 - Enhancements to current GUI based on OMDD Experiment Feedback
- Release in spring, contingent on OMDD Experiment and early user feedback

Object Model Data Dictionary Contents

OMDD Elements:

- Classes
 - names, associated terms, definitions, notes, and status
- Generic elements (attributes and parameters)
 - names, associated terms, definitions, notes, and status
 - data type, units of measure (multiple representations)
- Complex data types
 - names, fields, associated generic elements, and status
- Enumerated data types
 - names, enumerators, representations, notes, associated terms and status
- Interactions
 - names, associated terms, notes, and status

OMDD Development Process

Object Model Data Dictionary Population Status

- Initial efforts focused on population of OMDD elements based on requirements from:
 - Real-time Platform Reference FOM
 - Engineering Federation FOM
 - Joint Training Confederation FOM
- OMDD population:

Component Type	Current	Int. Review
Object Classes	59	_
Interaction Classes	4	60
Generic Elements	151	64
Complex data types	15	8
Enumerated data types	109	1
Enumerations	10964	-

- All OMDD components currently in Developmental status
- AMG programs to nominate additional FOMs/SOMs for reverse engineering to scrudder@arlut.utexas.edu

OMDD Experiment

- Purpose To provide practical experience in
 - Use of the OMDD elements in building FOMs
 - Use of the OMDDS to select OMDD elements for FOM construction
 - Use of the OMDTs to build FOMs from OMDD elements
- Status
 - Experiment underway
 - OMDDS and prototype OMDT in use
 - Positive feedback on OMDDS / OMDT integration and usability
 - New GUI capabilities recommended by OMDD Experiment team
 - Linkage from data types to generic elements
 - Selection of export contents from export area

OMDT Support for the OMDD Experiment

- New capabilities prototyped in OMDT:
 - Read multiple OMDD DIF files
 - Copy OMDD classes into an FOM/SOM
 - Copy OMDD interactions into an FOM/SOM
 - Copy OMDD generic elements into an FOM/SOM
 - as attributes and/or parameters
 - select from multiple representations
 - Copy OMDD complex data types into a FOM/SOM
 - Copy OMDD enumerated data types into a FOM/SOM
 - Associated lexicons filled out as selections are made

OMDD Experiment

Ms. Chris Bouwens, SAIC

Background

- Explore the use of the OMDD using the OMDDS and the OMDT
- Examine the use of the tools in the context of several approaches to FOM development
- Walk through the FEDEP (1.1) and FOM development processes to provide feedback

OMDDS

The OMDDS was used to select elements of the data dictionary and import them into the OMDT for Conceptual Model and FOM development

Results:

- Search capability very useful in developing export data set
- OMDD easily navigated using browser
- Feedback provided on ease of use and consistency

OMDT - OMDD Capability

- Allows use of multiple OMDD DIF files easy access
- Only shows entries that apply (only shows classes when viewing from "Class table" view)
- Able to build a entire FOM by bringing in elements from the OMDDS

FOM Development Methodology

Three main approaches:

- Bottom-up Approach
 - Ensures consistent data definition and offers multiple options
 - OMDDS vital to success of this approach
- Single SOM / Merge SOM
 - Closer to existing Federate implementation
 - Inconsistency in naming
- Reference FOM
 - Easier to remove rather than add likely that different folks implementing same types of objects would develop compatible FOMs
 - May leave an unnaturally deep hierarchy that serves no purpose in the federation

FEDEP Process

FEDEP Process was followed to explore where the various tools and techniques are implemented.

Results:

- FEDEP provides up front analysis required for assembling a Federation - provides a good guide for new developers
- FEDEP could be improved with more information on the various tools used (what is available, where to find them, etc.). Might serve as a good addendum

General Conclusions

- OMDDS and OMDT provide a quick and efficient means to develop object models using the OMDD
- Different FOM development approaches are well supported by the tools
- The FEDEP process is a useful guide for new users learning about HLA and what is needed to implement